
The Pleasure and Pain

Of Cross Platform CPU

Vector Code In Rust

Richard Neale
mathsDOTearth

May 31, 2025



Introduction

RISC-V HPC Library Performance Optimisation
For my MSc dissertation at EPCC I am looking at RISC-V HPC
Library Performance Optimisation. RISC-V technology is
developing rapidly and in the near future HPC will be able to take
advantage of these developments by optimising common libraries
to take advantage of RISC-V RVV vector extensions to provide a
wider choice of platforms for research and development.

1



Github

mathsDOTearth
If you wish to follow along with the the code I wrote for this talk,
you can find it at:

https://github.com/mathsDOTearth/SIMDRustTalk2025

2



Project Prep

Rust In The Beginning
While doing project preparation work in 2024, I initially looked at
using Rust as the core language to provide code examples for my
dissertation. This did not proceed due to initial lack of a stable
version of Rust on the available systems. The dissertation went
ahead using C examples.

3



A Year Later

RISC-V Developments
A year later armed with a Banana Pi F3 and a Milk-V Jupiter both
running Fedora 42 I felt it was time to give Rust another try.
Having better software support and RISC-V CPUs supporting RVV
1.0, I planned to write a simple test program implementing an
xGEMM like function with AVX, NEON and RVV versions.

4



Step 1

Scalar and AVX2
Using my trusty AMD 5700x Linux PC, I wrote the initial Scalar
and AVX2 code. xGEMM, for this example is implemented with
xDOT.
This initial step was surprisingly painless!
To gain access to AVX2 instructions I added:
use std::arch::x86 64::*;

Functions containing AVX2 instructions are unsafe.
Finally we need to as a .cargo/config.toml file:
[build]

rustflags = ["-C", "target-cpu=native"]

Rayon is used for multi-threading.

5



First Run

Timings and Tolerance
The test program performs a GEMM operation on two 1024 x
1024 arrays filled with random numbers.

Because AVX looses precision, when we compare the scalar and
SIMD calculated results we apply a tolerance of 1e-3 for f32 and
le-8 for f64.

The tests are run with cargo run -r

6



AMD 5700x AVX 2 Results

Benchmarking Timing and Speedup

Run Timing Speedup

f32 scalar 693.41ms -
f32 scalar Rayon 88.22ms 7.86x
f32 vector 95.57ms 7.26x
f32 vector Rayon 13.43ms 51.65x

f64 scalar 703.61ms -
f64 scalar Rayon 84.40ms 8.34x
f64 vector 210.81ms 3.34x
f64 vector Rayon 25.06ms 28.08x

Number of Rayon Threads: 16

7



Step 2

ARM NEON
Next ARM NEON is implemented on an Oracle ARM Cloud
computer. To gain access to ARM NEON instructions we use:
use std::arch::aarch64::*;

To tell the Rust compiler which machine specific code to build we
now add in target arch statements.

For the x86 64 code we prepend code with:
#[cfg(target arch = "x86 64")]

For the ARM code we prepend with:
#[cfg(target arch = "aarch64")]

8



ARM Neoverse N1 NEON Results

Benchmarking Timing and Speedup

Run Timing Speedup

f32 scalar 1.27s -
f32 scalar Rayon 323.74ms 3.93x
f32 vector 461.54ms 2.75x
f32 vector Rayon 48.87ms 26.00x

f64 scalar 1.29s -
f64 scalar Rayon 337.20ms 3.83x
f64 vector 940.43ms 1.37x
f64 vector Rayon 121.25ms 10.64x

Number of Rayon Threads: 4

9



Step 3

x64 AVX512
Next we add AVX512. This is where we meet our first quirks.
AVX512F support is only available in the rustc nightly build, so to
use these features we have to set rustc to be that version:

rustup override set nightly

We also need to add the following lines at the top of the code to
take advantage of these experimental features:

#![cfg attr(target arch = "x86 64",

feature(avx512 target feature))]

#![cfg attr(target arch = "x86 64",

feature(stdarch x86 avx512))]

10



Step 3 - STOP PRESS

x64 AVX512 - STOP PRESS
As of rustc 1.87.0 (17067e9ac 2025-05-09) we no longer
need to use the rustc nightly build, to access the features of
AVX512 used in this example, so back to stable:

rustup override set stable

We also need to remove the following lines at the top of the code:

#![cfg attr(target arch = "x86 64",

feature(avx512 target feature))]

#![cfg attr(target arch = "x86 64",

feature(stdarch x86 avx512))]

11



Step 3

x64 AVX512 (cont)
The second quirk is that our XEON CPU that supports AVX512
also supports AVX2 so we need to use a logical not to access
AVX2 features as being not AVX512. To identify which AVX
version we do this:

For x86 64 AVX2 we now use:
#[cfg(all(target arch = "x86 64", not(target feature =

"avx512f"))]

For x86 64 AVX512 we use:
#[cfg(all(target arch = "x86 64", target feature =

"avx512f"))]

The all keyword is needed in this case to enable these differing
features on the same CPU family.

12



Intel XEON 8170

Benchmarking Timing and Speedup

Run Timing Speedup

f32 scalar 1.16s -
f32 scalar Rayon 65.30ms 17.81x
f32 vector 126.89ms 9.16x
f32 vector Rayon 7.22ms 161.08x

f64 scalar 1.17s -
f64 scalar Rayon 79.32ms 14.80x
f64 vector 246.97ms 4.75x
f64 vector Rayon 13.78ms 85.15x

Number of Rayon Threads: 52

13



The Pain

RISC-V RVV 1.0
This talk is titled The Pleasure and Pain of Developing Cross
Platform CPU Vector Code in Rust. And you may be forgiven for
wondering where that title came from considering the ease with
which AVX2, AVX512 and NEON were implemented.

Let me introduce RISC-V RVV 1.0 in to the mix...

14



Step 4

RISC-V RVV 1.0
The initial issue is that the support for RISC-V seems to not
include intrinsics for the RVV instructions, so for try one we will
use asm! to embed RISC-V assembly language instructions.

15



Step 5

Giving Up
I gave up, running low on time I decided in the end to implement
the xDOT function for RVV 1.0 in C. I am currently targeting a
single RISC-V architecture so I have to admit that I have maybe
not written the most flexible code, but it works for my needs.

Using C rather than Rust defeats the point of the original plan and
the Rust code is a little cludgy now with the need for RISC-V
sections vs everything else.

16



Step 5

Adding C to the Build
To add the C code we need to create a build.rs file to give the C
compiler flags, then add in cc as a [build-dependency] with in
our Cargo.toml file.

Using C rather than Rust defeats the point of the original plan and
the Rust code is a little cludgy now with the need for RISC-V
sections vs everything else.

17



Step 5

Adding C to the Code
Using #[cfg(target arch = "riscv64")] and
#[cfg(not(target arch = "riscv64"))], the code for calling
the xGEMM functions is split up. From the RISC-V build, the
xDOT functions are called via a unsafe extern "C" function call
to the functions written in the vector dot.c file.

This code builds and runs with the stable rustc compiler.

18



Spacemit K1

Benchmarking Timing and Speedup

Run Timing Speedup

f32 scalar 16.67s -
f32 scalar Rayon 1.17s 14.22x
f32 vector 2.67s 6.24x
f32 vector Rayon 474.80ms 35.10x

f64 scalar 7.87s -
f64 scalar Rayon 1.21s 6.51x
f64 vector 3.81s 2.07x
f64 vector Rayon 1.07s 7.34x

Number of Rayon Threads: 8

19



Conclusion

And in the end...
CPU vector instruction sets offer great opportunities for
optimisation of certain workloads within Rust. AVX512 really does
stand out above and beyond the other instruction sets I have used
(although I have yet to play with ARM SVE2).

Sadly, for my dissertation, RISC-V RVV 1.0 needs work to get full
support, and the RISC-V CPUs I have access to are not high
performance devices; but the potential is there and in a few years I
am sure they will make big strides.

20



Any Questions?

21


