Exponential Time Integration for Stiff Systems in Rust Scientific Computing in Rust 2025

William Gurecky, Konstantin Pieper June 4, 2025

https://github.com/ORNL/ORMATEX. USDOE. 24 Jan. 2025. Web. doi:10.11578/dc.20250124.7.

ORMATEX provides a Rust-based implementation of the matrix exponential, φ -vector products and exponential integrators (EI).

- EI are applicable to stiff, linear-dominant systems.
- Utilizes faer for dense and sparse matrix operations¹.
- Provides a python interface to rust-based exponential integrators via PyO3.

[']https://github.com/sarah-quinones/faer-rs AK RIDGE

Exponential Time Integration

Exponential integrators are expected to be profitable when the linear term is the primary contributor to the system stiffness.

$$\frac{d\mathbf{u}}{dt} = L\mathbf{u} + N(\mathbf{u}, t)$$
$$\mathbf{u}_{t+1} = e^{L\Delta t}\mathbf{u}_{t_0} + \int_0^{\Delta t} e^{L(\Delta t - \tau)}N(t_0 + \tau, \mathbf{u}_{t_0 + \tau})d\tau$$

Approximating the integral via box rule at the left yields Exponential Euler:

$$\mathbf{u}_{t+1} = e^{L\Delta t}\mathbf{u}_{t_0} + \Delta t\varphi_1(L\Delta t)N(t_0,\mathbf{u}_{t_0})$$
$$\varphi_0(Z) = e^Z, \ \varphi_1(Z) = Z^{-1}(e^Z - 1)$$

EI methods do not employ Newton iterations, but instead require φ -vector products and matrix exp. evaluations.

ORMATEX Capabilities Matrix

Method	Rust Status	Py Bindings	Notes
expm	\checkmark	-	-
Rational function φ (A) eval.	\checkmark	\checkmark	CRAM, Padè, Dense A
Krylov based $arphi(A)$ eval.	\checkmark	-	Sparse A (faer LinOp)
Exp. Rosenbrock (ExpRB)2	\checkmark	\checkmark	Krylov
ExpRB3	\checkmark	\checkmark	Krylov
EPI3	\checkmark	\checkmark	Krylov, KIOPS ²
EPIRK4	in progress	-	Krylov, KIOPS
Leja ExpRB2,3	in progress	-	-
Leja EPI3	in progress	-	-

²S. Gaudreault, G. Rainwater, and M. Tokman. "KIOPS: A fast adaptive Krylov subspace solver for exponential integrators." J. of Comp. Phys. 372 (2018).

Example Use

```
1 use faer::prelude::*:
2 use ormatex::matexp pade;
3 use ormatex::matexp cauchy:
 4
 5 pub fn main() {
       // example matrix
       let lmat = faer::mat![
           [-1.0e-3. 1.0e1.
                                   0.1.
 9
                   0...-1.0e1. 1.0e-1].
10
                   0..
                          0.. -1.0e-1].
       1:
12
       // expm(dt*L) with pade approx
14
       let dt = 1.0:
       let exp lmat pade = matexp pade::matexp(lmat.as ref(), dt);
16
17
       // expm(dt*L) with partial fraction decomposition method
18
       let order = 24:
       let matexp eval = matexp cauchy::gen parabolic expm(order):
19
20
       let exp lmat pdf =
           matexp eval.matexp dense cauchv(lmat.as ref(), dt):
       // A simple integration procedure for a pure-linear system
24
       // Step system u t+1 = expm(dt*lmat)*u t
       let mut v = faer::mat![[0.001]. [0.1]. [1.0]]:
26
       let mut t = 0.0:
       for i in 0..10000 {
28
           v = matexp eval.matexp dense cauchv(lmat.as ref(), dt)
29
               * v.as ref():
30
           t += dt;
31
```

Figure 1:
$$\frac{d\mathbf{u}}{dt} = L\mathbf{u}$$
; $\mathbf{u}_{t+1} = e^{\Delta tL}\mathbf{u}_t$. See: examples/ex_matexp_1.rs

Case Study: Bateman

Figure 2: Exp. Rosenbrock3 (Left) vs ESDIRK3 (Right), $\Delta t = 10(s)$

 $L = \begin{bmatrix} -0.1 & 0 & 0 \\ 0.1 & -1 \times 10^1 & 0 \\ 0 & 1 \times 10^1 & -1 \times 10^{-3} \end{bmatrix}$

• 3 species: c_0, c_1, c_2 .

• ICs:
$$c_0(t=0) = 1$$

 $\cdot c_{1,2}(t=0) = 0$

 $\frac{d\mathbf{u}}{dt} = \mathbf{L}\mathbf{u}$

Case Study: Bateman

Figure 3: Exp. Rosenbrock3 (Left) vs ESDIRK3 (Right), $\Delta t = 25(s)$

 $L = \begin{bmatrix} -0.1 & 0 & 0 \\ 0.1 & -1 \times 10^{1} & 0 \\ 0 & 1 \times 10^{1} & -1 \times 10^{-3} \end{bmatrix}$

- 3 species: c₀, c₁, c₂.
- ICs: $c_0(t=0) = 1$
- $c_{1,2}(t=0)=0$

 $\frac{d\mathbf{u}}{dt} = \mathbf{L}\mathbf{u}$

Case Study: Bateman

 $\frac{d\mathbf{u}}{dt} = \mathbf{L}\mathbf{u}$ $L = \begin{bmatrix} -0.1 & 0 & 0\\ 0.1 & -1 \times 10^1 & 0\\ 0 & 1 \times 10^1 & -1 \times 10^{-3} \end{bmatrix}$

- 3 species:
 c₀, c₁, c₂.
- ICs: $c_0(t=0) = 1$
- $\cdot t_{final} = 100 s$

CAK RIDGE

Figure 4: Error vs. Time Step Size

- BCs: Periodic.
- ICs: Smooth wave 0th species.
- 2^{nd} order CG FEM. $\Delta x =$ 0.0156(m).
- t_{final} = 2s.
 v=0.5m/s.

CAK RIDGE

0.00025

Figure 5: ESDIRK Order 3, $\Delta t = \{0.1, 0.2, 0.5\}$

- BCs: Periodic.
- ICs: Smooth wave 0th species.
- 2^{nd} order CG FEM. $\Delta x =$ 0.0156(m).
- $t_{final} = 2s.$ v=0.5m/s.

CAK RIDGE

Figure 6: Exp. Rosenbrock Order 3, $\Delta t = \{0.1, 0.2, 0.5\}$

$$\frac{\partial \mathbf{u}}{\partial t} = \mathbf{L}\mathbf{u} - \mathbf{v}\nabla\mathbf{u}$$

$$L = \begin{bmatrix} -1 & 0 & 0 \\ 1 & -1 \times 10^2 & 0 \\ 0 & 1 \times 10^2 & -1 \times 10^{-2} \end{bmatrix}$$
• BCs: Periodic.

0

- ICs: Smooth wave 0th species.
- 2^{nd} order CG. $\Delta x =$ 0.0156(m).
- $t_{final} = 2s.$ v=0.5m/s.

CAK RIDGE

Questions

W. Gurecky, and K. Pieper. ORMATEX. Computer Software. https://github.com/ORNL/ORMATEX. USDOE. 24 Jan. 2025. Web. doi:10.11578/dc.20250124.7.

References:

- Tokman, Mayya. "A new class of exponential propagation iterative methods of Runge–Kutta type (EPIRK)." Journal of Computational Physics 230.24 (2011): 8762-8778.
- Hochbruck, Marlis, Alexander Ostermann, and Julia Schweitzer. "Exponential Rosenbrock-type methods." SIAM Journal on Numerical Analysis 47.1 (2009): 786-803.

Acknowledgements

This research was sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle LLC for the US Department of Energy under contract no. DE-AC05-00OR22725.

Appendix

Case Study: Nonlinear Lotka-Volterra • Verify time integration method order of convergence.

Figure 8: Exp. Rosen. 2 (Left) vs Exp. Rosen. 3 (Right), $\Delta t = 0.02(s)$

Case Study: Nonlinear Lotka-Volterra • Verify time integration method order of convergence.

Time step size. Δt

Figure 9: Method time step size convergence order

- ICs: Smooth wave 0th species.
- 2nd order CG.
- $t_{final} = 2s.$ v=0.5m/s.

CAK RIDGE

Figure 10: Eigenvalues of Jacobian

