
DotBlocks09/06/2025 1

Efficient point location with
ploc

06/06/2025

Scientific computing in Rust

09/06/2025 DotBlocks 2

Who am I?

• Background in solid mechanics

• Worked as a Cast3M developer
for a while (FEM code developed
at the French Atomic Energy
Commission)

• Co-founded DotBlocks in 2023

We want to make numerical
simulation more accessible

• Prototypes in Python, then Rust
is used for performance and
robustness

…and more!

Lattice Boltzmann (LBM)

Boundary Element Method (BEM)

https://dotblocks.com/

09/06/2025 DotBlocks 3

The point location problem

Given a mesh and some query points, we want to know which
cells/elements of the mesh contain each query point

Why is that an interesting problem?

• Comes up in:
• Interpolation of discrete fields

• Computing statistical quantities in Lagrangian particle tracking

• In many other areas (computer graphics, CAD, etc…)

• Leads to some very interesting data structures

• Brute force approach is 𝑂(𝑛) for each query point… Can we do better?

09/06/2025 DotBlocks 4

The trapezoidal map

• A randomized incremental algorithm which constructs in
𝑂(𝑛 log 𝑛) a data structure with 𝑂(𝑛) size and 𝑂 log 𝑛 query
time for the point location problem

• Data structure: a directed acyclic graph (DAG) with three types of
nodes:
• X nodes
• Y nodes
• Trapezoids (leaf nodes)

• Edges of the mesh are shuffled, and then added one at a time

• At each iteration, we have a search structure we can use to find
where the next edge should be inserted!

09/06/2025 DotBlocks 5

Basic example

AAA

𝑃1

𝑃2

𝐸1

BC

D

𝑃1

𝑃2A

𝐸1

C D

B

A

𝑃1

𝑃2

𝐸1

BC

D

𝑃3

𝐸2

E

F

𝑃1

𝑃2A

B

𝐸1

C D

𝑃3

𝐸2

E F

A

𝑃1

𝑃2

𝐸1

𝑃1BC

D

𝑃2A

B

𝐸1

C

D

𝑃3

𝐸2

E

F

𝑃3

𝐸2

E

F

𝐸3

G

𝐸3

𝐸3

G

A

𝑃1

𝑃2

𝐸1

𝑃1BC

D

𝑃2A

B

𝐸1

C

D

𝑃3

𝐸2

E

F

𝑃3

𝐸2

E

F

𝐸3

G

𝐸3

𝐸3

G

A

𝑃1

𝑃2

𝐸1

𝑃1BC

D

𝑃2A

B

𝐸1

C

D

𝑃3

𝐸2

E

F

𝑃3

𝐸2

E

F

𝐸3

G

𝐸3

𝐸3

G

A

𝑃1

𝑃2

𝐸1

𝑃1BC

D

𝑃2A

B

𝐸1

C

D

𝑃3

𝐸2

E

F

𝑃3

𝐸2

E

F

𝐸3

G

𝐸3

𝐸3

G

A

𝑃1

𝑃2

𝐸1

𝑃1BC

D

𝑃2A

B

𝐸1

C

D

𝑃3

𝐸2

E

F

𝑃3

𝐸2

E

F

𝐸3

G

𝐸3

𝐸3

G

A

𝑃1

𝑃2

𝐸1

𝑃1BC

D

𝑃2A

B

𝐸1

C

D

𝑃3

𝐸2

E

F

𝑃3

𝐸2

E

F

𝐸3

G

𝐸3

𝐸3

G

A

𝑃1

𝑃2

𝐸1

𝑃1BC

D

𝑃2A

B

𝐸1

C

D

𝑃3

𝐸2

E

F

𝑃3

𝐸2

E

F

𝐸3

G

𝐸3

𝐸3

G

X nodes

Y nodes

Trapezoid nodes

Query point

09/06/2025 DotBlocks 6

ploc

• Available on crates.io and GitHub

• Inspired by the matplotlib implementation
• Generalized to any kind of mesh (multiple cell types and any kind of

polygon)

• Leverages rayon for speed (each query is independent)

https://crates.io/crates/ploc
https://github.com/bluthej/ploc
https://github.com/matplotlib/matplotlib/blob/91208626db01e0c3c6ac17f24777d47e6601b220/src/tri/_tri.cpp#L1065-L2068
https://github.com/rayon-rs/rayon

09/06/2025 DotBlocks 7

Code example
// The `TrapMap` struct implements the `PointLocator` trait

use ploc::{Mesh, PointLocator, TrapMap};

fn main() {

// Create a simple mesh (a regular 10x10 grid)

let (xmin, xmax) = (0., 10.);

let (ymin, ymax) = (0., 10.);

let n = 10;

let mesh = Mesh::grid(xmin, xmax, ymin, ymax, n, n).unwrap();

// Create the trapezoidal map

let trap_map = TrapMap::from_mesh(mesh);

// Locate a single point

assert_eq!(trap_map.locate_one(&[0.5, 0.5]), Some(0));

// Locate multiple points

let query: Vec<_> = (0..10)

.flat_map(|iy| (0..10).map(move |ix| [0.5 + ix as f64, 0.5 + iy as f64]))

.collect();

let expected: Vec<_> = (0..100).map(Some).collect();

assert_eq!(trap_map.locate_many(&query), expected);

}

09/06/2025 DotBlocks 8

Rust-specific implementation details

• DAG part not super obvious
• mpl C++ implementation uses pointers all over the place

• Possible in Rust but would require a lot of unsafe because parents need
references to their children and children to their parents (probably
something like the Production-Quality Unsafe Doubly-Linked Deque would
work)

• I instead took inspiration from Arena-Allocated Trees in Rust
• One Vec of nodes (the node is generic over the data it holds)

• Each node has a Vec of parent ids and a SmallVec of children ids (always 0 or 2 children)

• Implemented an “entry API” like that of std::collections::HashMap to link
nodes and to mutate the values they hold

https://rust-unofficial.github.io/too-many-lists/sixth.html#a-production-quality-unsafe-doubly-linked-deque
https://dev.to/deciduously/no-more-tears-no-more-knots-arena-allocated-trees-in-rust-44k6

09/06/2025 DotBlocks 9

Comparison with the matplotlib implementation

• High compatibility with the mpl implementation
• Property-based testing with hypothesis shows perfect agreement for query

points “not too close to mesh vertices”
• For query points very close to mesh vertices, floating point arithmetic +

dependence on the C++ std library used to compile mpl get in the way…
• Cannot be helped as far as I can tell

• Single-threaded implementation roughly 20% faster than mpl

• Multi-threaded implementation 8x faster than mpl

• But peak memory usage is about 1.2x to 2x higher
• Due to the DAG, which holds a Vec of enums

whose variants have very different sizes…
• The biggest variant is the least frequent node

type!

#[derive(Clone, Debug)]
pub(crate) enum Node {

X(usize), // 16 bytes
Y(Edge), // 56 bytes
Trap(Trapezoid), // 176 bytes!

}

https://github.com/HypothesisWorks/hypothesis

09/06/2025 DotBlocks 10

What’s next?

• Release Python bindings (almost ready to publish on PyPI)

• Reducing the memory footprint to get on par with mpl

• Investigate other possible data structures
• Quadtree implementations seem promising

• Much simpler to implement

• Very good performance for large meshes

• Potentially generalizable to 3D

• Provide more information in the output (is the query point on an
edge? On a vertex?)

DotBlocks09/06/2025 11

https://www.dotblocks.com/

contact@dotblocks.fr

https://www.dotblocks.com/

	Section par défaut
	Diapositive 1
	Diapositive 2 Who am I?
	Diapositive 3 The point location problem
	Diapositive 4 The trapezoidal map
	Diapositive 5 Basic example
	Diapositive 6 ploc
	Diapositive 7 Code example
	Diapositive 8 Rust-specific implementation details
	Diapositive 9 Comparison with the matplotlib implementation
	Diapositive 10 What’s next?
	Diapositive 11

