
Multidimensional Data Analysis
Scientific Computing in Rust, 2024

Libor Spacek
(liborty@github.com)

https://github.com/liborty

18th July 2024

https://github.com/liborty


Overview

Introduction

Test Problem

Dimensions Reduction

Reflections on Rust

Implementation

Some New Concepts

Code Example and Benchmark Test

Conclusion



Introduction

▶ ‘Scientific Computing’ implies working with numbers

▶ Primary data structures used: Vec<T>, Vec< Vec<T> > and
their slices

▶ Using Vec, we were able to combine in one crate: Statistics,
Information Theory, Vector Algebra (operations on several
vectors), Linear Algebra (matrices) and Data Analysis (many
multi-dimensional nd vectors)

▶ Our treatment of nd data is constructed from the first
principles. Some novel concepts are introduced and
implemented



Test Problem

Numer.ai tournament competition provides a lot of numbers:

▶ Five ordered outcome classes (0.0, 0.25, 0.5, 0.75, 1.0)

▶ Current training set of 2,790,013 instances (changing weekly)

▶ Daily set of 4,917 instances, each to be classified by a single
number in (0,1). Any placed out of order incur penalties

▶ Each instance has 2,376 features. It is one point in 2,376
dimensional space. Outcome classes form large, densely
intersecting clouds (not all of the same size)

▶ Most data analysis and machine learning (ML) problems can be
formulated in these terms, though not readily ‘solved’. Instead,
many people resort to ‘black box’ of a neural network.



Dimensions Reduction

▶ In the forlorn hope of reducing the data and gaining more focus,
some attempt PCA. However, this adds significant load with
iterative eigenvalues computation in the original large space

▶ We select significant axis based on small values of their
Mahalanobis scaling. This is more manageable, as it only
requires one efficient Cholesky matrix decomposition

▶ Each cloud is processed individually. Each then has its own
subspace based on its own shape, which aids classification.



Reflections on Rust

▶ Implemented a number of related crates on crates.io: ran
(random numbers), times (benchmarking), medians (in 1d),
indxvec (sorting, searching, indexing, printing), sets, rstats

▶ Rstats is the main crate for the purposes of this presentation

▶ + Rust allows running the above large problem on my home
desktop (impractical with Python)

▶ + Functional chaining, + no execution errors

▶ + Easy multi threading (with rayon)

▶ - Implementing generic traits for Vec should be easier.

https://crates.io/crates/ran
https://crates.io/crates/times
https://crates.io/crates/medians
https://crates.io/crates/indxvec
https://crates.io/crates/sets
https://crates.io/crates/rstats
https://github.com/liborty/rstats


Implementation

The main constituent parts of Rstats are its generic traits. All data
are Vecs of arbitrary length d (dimensionality). The traits are mostly
distinguished by the number of Vec arguments their methods take:

▶ Stats: a single collection of numbers (1 argument)
▶ Vecg: methods of vector algebra and information theory (2

arguments, e.g. scalar product)
▶ MutVecg: some of the above methods, mutating self
▶ Vecu8: some methods implemented more efficiently for u8
▶ VecVec: ‘self’ is vector of vectors: n vectors in d dimensions
▶ VecVecg: takes an extra generic argument, typically a vector

of weights. For example, to find weighted geometric median of
points with varying importance (such as time dependence).



Some New Concepts

Geometric median is stable and reduces the undue influence of
outliers. Thus zero median vectors are generally preferred to the
commonly used zero mean vectors

▶ median correlation - we normalise both data samples to
their zero median forms (instead of Pearson’s zero mean form).
Treating them as vectors, we define the median correlation as
cosine of an angle between them (same as Pearson)

▶ comediance matrix (nd) - like covariance matrix but
computed from zero median data, obtained by setting the
origin to the geometric median.

▶ madgm (nd) - generalisation of robust data spread estimator
known as ‘MAD’: median of absolute deviations from median
(1d). In nd, we replace the deviations by the distances from the
geometric median (already always positive).



Code Example and Benchmark Test

▶ Arithmetic nd mean is where the sum of vectors is zero.
Geometric median (gm) is where the sum of unit vectors is zero
(less susceptible to outliers but can only be found iteratively)

▶ My gm algorithm - perhaps not the fastest possible but
relatively simple and easy to parallelise

▶ Solves the instability and convergence problems of the original
Weiszfeld algorithm

▶ The benchmark comparison deploys my crate times

https://crates.io/crates/times






Conclusion

How does this approach compete with 738 data scientists, running
existing neural nets libraries in SciPy?

(I messed up with their new data format and got pipped to the post)


	Overview
	Introduction
	Test Problem
	Dimensions Reduction
	Reflections on Rust
	Implementation
	Some New Concepts
	Code Example and Benchmark Test
	Conclusion

